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ABSTRACT

We consider the evaluation of and bounds for the rate distortion functions

of independent and identically distributed (i.i.d.) sources under a magnitude-
error criterion. By refining the ingeneous approach of Tan and Yao we evalu-
ate explicitly the rate distortion functions of larger classes of i.i.d. 1

sources and we obtain familieis of lower bounds for arbitrary i.i.d. sources




I. INTRODUCTION

The rate distortion function of an independent and identically distributed
(i.i.d.) source is clearly equal to the rate distortion function of each random
variable of the source. We will evaluate the rate distortion function of a
random variable X with probability density p(x) satisfying certain conditions.

A magnitude-error criterion will be used throughout without further reminder.

The procedure used was introduced by Tan and Yao (1975) and is based on the
well-Kknown analytical expression of R(D) which is stated for reference. (See

for instance Berger, 1971).

THEOREM A. Let X be a random variable with probability density function
p(x) and rate distortion function R(D). For each s<0, let N be the set of all
S

non-negative functions \ satisfying
s

(=8}

C. ) = [ A, (Ip(x)exp(six-ydx < 1 (1)

for all y. Then for all D > 0,
(5]

R(D) = sup [sD + f p(x)ang(x)dx] : (2)
SSO,XSGAq -0 i

For each s<(0,a necessary and sufficient condition for Xs to realize the
supremum in (2) is the existence of a probability distribution CS which is

related to As by

[es)

001! = [ exp(s]x-y])do, () (3)

- 00

and is such that Cg(y) = 1 a.e. [dGSI . Moreoever, for such AS and GS, R(D)

is given parametrically in s by

[es}

R(D) = sD_ + [ p(x) L) (x)dx (4)
-0 s<(
D, = I Xg(x)p(x)l\~yfcxp(slx~yl)dx dG_(y) . (5)

ingeneous procedure to seavch ftor \R satisfying (1) and (3) was given




by Tan and Yao (1975) and is described in the following immediate corollary

of Theorem A.

COROLLARY A.l1 [Tan and Yao (1975)]. Let X be a random variable with probabilitu
density function p(x) which vanishes outside the interval (a,b), -«<a<b<», For

each s<0, let VS be a subinterval of (a,b) and assume that the distribution func-

tion Gs(y), erg, whose total probability is concentrated on Vs, and As(x),

xe [a,b], satisfy

[As(x)]"l = f exp(slx—yl)dcs(y), for all xe[a,b] (6)
\/
and s
b
f Xs(x)p(x)exp(slx-yl)dx =1 , for all yevs = ()
a

i3 As satisfies (1), then the rate distortion function of X is given by (4) and (5).

The significance of this straightforward corollary lies in the fact that for
some densities p, intelligent (or appropriate) choices of VS can be made such
that (6) and (7) can be solved and the solutions satisfy the properties stated in
the Corollary. Using this procedure, the rate distortion functions of an i.i.d.
Gaussian source, and of a certain class of i.i.d. sources were calculated ex-

plicitly [Tan and Yao, (1975)].

In this paper we make two uses of this procedure of Tan and Yao. First, in
section II, we refine their results, by a substantial weakening of the conditions on
the density, thus calculating explicitly the rate distortion functions of larger
classes of i.i.d. sources. In Theorem 1 the density of the source has finite
support, Theorem 2 treats concave source densities, and in Theorem 1' the support
of the source density is the entire real line or a half line. Secondly, we
develop a family of lower bounds for the rate distortion function of an arbitrary

i.i.d. source (Theorem 3) and compare them with the Shannon lower bound in




Section III. We also indicate how Theorems 1 and 1' may be combined with a
known approximate rtesult (Theorem B) in evaluating the rate distortion functions
of certain i.i.d. sources whose densities do not satisfy the assumptions of

Theorems 1 and 1'.

II. RATE DISTORTION FUNCTIONS OF I.I.D. SOURCES

We first consider rate distortion functions of random variables with con-

tinuous densities which vanish outside a finite interval.

THEOREM 1. Let X be a random variable with probability density function
p(x) which vanishes outside the interval [a,b], -© < a < b < =, Assume the

following:

(A) p is continuous with median | and there is an at most finite set of

points a = dO < d, L. .5 dm < dm+ = b (m20) such that on each [dj,d. 15

1 1 J*1

j=0,1,...,m, p(x) is differentiable and its derivative p'(x) is absolutely
continuous and satisfies p:(dj) > p;(dj), j=1,...,m, where pl(dj) and pl(dj)

are the left and right limits of p' at dj respectively. Also

X b
f pi(t)dt > 0 for x > a; f p(t)dt > 0 for x < b .
a X

(B) The function

b
Kl(x) = p(x)/ f p(t)dt for xe[u, b) (8)
X
diverges to +® as X increases to b; and the function
X
K,(x) = p(x)/ [ p(t)dt  for xe(a,u] (9)
a

diverges to +® as X decreases to a.
Then for each se(-2,-2p(u)), there exist unique a_ > 0 and bg > 0 such

that nq%u—a and b_tb-u as s¥-= and a_ and b_ are determined by




p-a_ = min{ye(a,n): K,(y) = |s|} (10}

Wb, = max{ye (u,b): Kl(y) = sk (11)

Suppose 1n addition that

(C) for each se(-=,-2p(n)) ,

=
p(x) - s p'(x) 20 a.e. [Leb.] on [u—as,u+bsl

Then the rate distortion function R(D), 0 < D < Dmux’ of X is given parametrically

in s by
) H+b =g
R(DS) = an%l - f 2 p(x)&n(ep(x))dx - ﬁn(p(u—as))f Sp(x)dx
B p-a a
S
b
- fa(p(u+b)) [ p()dx (12)
©  u+b
s
" U+bs U-Gq b
By =157 [ pdx + [ T(u-a-x)p()dx + [ (x-p-b)p(x)dx (13)
H-a a LH—})g
b
where - < s < -2p(u) and Dmax = ! | x-u[p(x)dx .

Proof: We will show that all conditions of Corollary A.l are satisfied with
VS = [u—as,u+bs] where the dependence of as bS on s will be specified later.
Substituting (6) into (7) and writing the integral from a to b as the sum

of the integrals from a to H-a to u+b_ to b, we have

A, exp(sy) + A, _exp(-sy) + f a ()exp(s|x-y[)dx = 1 (14
Vs
for chS, where A[,s’ Az’5 and a, are given by
H-a
Ay o * [ "p(t)dt/ [ exp(st)dG () (15)
y -~ a \’, <
L

|




b 1
A = [ p(t)de/ / cxp(-st)dus(t) (16)
Sy pn+b v ’
5 S
uﬁ(x) = px)/ f exp(s]x—t')ddg(t) : (17)
S v E

By differentiating (14) with respect to y, we find that it is necessary that

as(x) = ls|/2, Al,s = &exp(—s(u—as)), AZ,S = 2CXP(S(U+hS))

and these are also sufficient for (14) (which can be verified by substituting
into (14)).

Substituting the solutions into (15), (16) and (17) we obtain

u-a_
[ exp(s(t-pra))dc_(t) = 2 [ "p(t)dt (18)
a
b
p(s(utb_~-t))dG_(t) = 2 [ p(t)dt (19)
S S
S u".bS
f exp(stx-tl)dcs(t) = (2/|s])p(x) xev, . (20)
VV
S

Clearly (18) and (19) are consistent with (20) if and only if

u—as 1
[ *p(t)dt = — p(u-a ) 21
a |s| 5
and
b li
[" pt)ae = T plushy) . (22)
H+b l‘l i
s
Now (21) is equivalent to Kz(u—as) = lsl. Note that conditions (A) and (B) imply

that Kz(x) is continuous on (a,u], differentiable on (a,n] except at those di’s

which belong to (a,u] at which left and right derivatives exist, and satisfies

Ky(u) = 2p(u) and lim Kz(x) = +0, [t follows that given any se(-®,-2p(u)) the
- xta

equation K,(U—nq) = Isl has at least one solution. For reasons which will

become clear later on in this proof we will choose the smallest solution:




=g = man{ye(a W) iG] = s
S 4 2

which is clearly such that u-ug¢u as s+v-« and has the following properties (to

be used later on):

Ké‘+(u—us) < 0, and Kg(y) > ]sl for all y-(u,n-us)
Similarly, by the properties of Kl(x), bS is uniquely determined by
gEb, = max{ye (1,b) : K@) = |s|} (24)
and has the following properties: u+hsfb as svy-o

Ki _(u+bs) > 0, and Kl(y] > Isl for all yg(u+bs,h)

»

We next show that for each se(-~,-2p(n)), the distribution function Gq(x)

. - . . = >
which has absolutely continuous part with density p(x)-s “p"(x) on Vg and zero
elsewhere, discrete part with atoms at the points Hedg, u+b§ and the dj‘s which
are in [u-aQ, U*bql and masses to be determined, and zero continuous singular

part, is a solution of (20). For notational convenience we will work with the

"density" g of the above described distribution function Gee which is thus of the

form
-2 2+n-1
. 4 _ 1" ~ " A ¢ = Py
g5 (1) = p(t)-s "p"(t)+C; B(t-ura)+C, S(t-u-b)) + iZQ D, (8(t-d;) (25)
for t(Vq and zero elsewhere, where
dl-l < u—as < dQ<...< dQ+n—1 < LuhS < dl@n

and §(¢) is the Dirac Delta function.

The masses C v G

s and b, can now be determined so that (20) will be
kyS 255 S

satisfied. We find (see Appendix 1)
-2
Cp s = IsI ™ Mslptu-ag) - pltu-a)]

| = ISI‘M”*II‘(“”‘S) + pi(u*hs')] £ (26)

2,5

D, . = I*IVVLIP'(\I.i) - P:ld_i” g j <f+n-1

<
I3

il




Having determined g so as to satisfy (20) it remains to be shown that g 1is &«
& 5 / 5

probability "density" function, i.e. that G  is a probability distribution func

=D
tion. Since p(t) - s p"(t) > 0 a.e. [Leb| on V_ by assumption (C) and

(26) that G, is a distribution function if and only if

ISIPLu—aS) - pylu-a) 2 0 (27

[slpGusb ) + p!(utb) > 0 (28)
and

[g (0)dt = [dG () =1 . (29)

v, o o

S S

To show (27), we proceed as follows. Since K} +(u—a<) < 0 we have from (9)

u—aq 2
py(-a)) [ “p(t)dt - p“(n-a,) <0
a

and using (21) obtain

H-a_
[ [ “p(o)atilpl(u-a) - |slptu-a)] < 0
a

U-a

Now since a < H-a_ we have f Sp(t)dt > 0 by condition (A) and thus (27) follows.
) a

(28) can be proved similarly, and (29) can be verified easily.

Next we need to show that Cs(y) < for y&vg. As(x) is found by substituting

g into (6) and we have (see Appendix 2)

[fsl/Zp(u~aS)]exp(-s(u-as)+sx) X&[H,U—HS]
A () =4 [s]/2p(0) xeV (30)

[lsI/Jp(u+hS)]oxp(s(u+hs)—sx) xe [usb b

Now suppose that a < y < Hed . Then

y b
Cg(y) = f Aq(x)p(x)vxp(s(y—x))dx + f Xq(x)p(x)cxp(s(x—y)\lx.
g a - ¥

Differentiating C_(y) with respect to y, we have




y b
C;(y) = -|s] f A (x)p(x)exp(s(y-x))dx + fsi f A (x)p(x)exp(s(x-y))dx
s S G
a y
= Is;(ﬁq(y) = h. £F))

where

y
hg(y) = 2cxp(sy)f Aﬁ(x)p(x)cxp(-sx)dx
< At

Substituting (30) into (32) we have

.
h () = [s OXp(«S(u-as)+sy){ p(x)dx/p(u-a,)

and finally, because of (21)

p-a

y S
hs(y) = Cxp(sy)f p(x)dx/exp(s(u-as)) f “p(x)dx aiy<u—as

a a

We now show that

Y
R = exp(sy)f p(t)dt

a

is increasing. Indeed we have

,
£1(y) = exp(sy) (p(y) - |s|f p(t)dt)

a

Now (23) and (9) imply, as was remarked, that

Ky (y) = Ky(u-a ) = |s|] for a<y<u-a_

ye(a,u-as]

[t then follows from (9) that f'(y) > 0, a<ysu-a_, and thus f is increasing on

(a,u—aS]. Hence hg(y) < 1 for ye(a,u—ag] and since hg(a) = 0, it follows that

h (y) <1 for ye[a,u-as].

Now, as in Appendix A of [Tan and Yao, (1975)] it is shown that Cq(y) =i

for all y%vs.

Thus, by Corollary A.1, R(D) is given parametrically by (4) and (5).

and (5) are shown in Appendix 3 to have the final expressions given in (12) and (13).

This completes the proof of the Theorem.

|
|
|
1




The following examples are applications of Theorem 1.

Example 1. Let p(x) be a truncated double-exponential density function defined

on i f~e el e = 0N e

p(x) = aexp(-a|x|)/2(l-exp(-ac)) |xl<e, o>0 .

The assumptions of Theorem 1 are satisfied and are verified in the following:

(A) p(x) is clearly continuous with median u = 0. p(x) has continuous
second derivative everywhere except at x = 0 at which the first derivative is dis-
continuous and

p'(0) = az/Z(I—exp(-ac)) > pL(O) = —a2/2(1—exp(-ac))

(B) Kl(x) = a exp(-ax)/[exp(-ax) - exp(-ac)]t+e as xtc . Similarly,
K,(x)#t+»0 as x¥-c. In fact, Kl(x) is easily seen to be monotonically increasing
for xe[0,c] and Kz(x) monotonically decreasing for xe[-c,0]. Thus (10) and (11)
give

e e a—lﬁn(l—a/ls!)

Now [s| takes on its minimum when a_ = 0. This implies that

[s] = a/[1-exp(-ac)] > a. Thus
-2, 2 -2

€ p(x) - s p'"(x) = (1-a”s T)p(x) > 0 for se(-»,-a/[l-exp(-ac)] and for all
xs[-as,as].

Therefore R(D), 0 < D < qu(, is given by (12) and (13). Calculation (routine

and thus omitted) shows that

R(Ds) = 1n[|s|(1—exp(-ac))/a] - exp(—ac)[c+a_lln(l-a/|s|)]/[l-exp(—ac)] (33)

b, = [ls[_l + u-lexp(-ac)ln(lwa/lsl)I/[l—oxp(—uc)] (31

where !sl»[u/(l~cxp(—ac)),w) and

Dmux = [a~l - (c+d_l)oxp(—uc)]/ll—v\pfuuc)] . (35)




Example 2. Let X be a random variable with density
p(x) = 1/(x 2£nl00), 0.01 < x < 1.
Then p(x) is continuous and differentiable with p = 0.1. Conditions (A) and (B)
are clearly satisfied. Note that Kl(x) decreases for p < x < e~1 and then increases
to +° as x*1. Condition (C) is not satisfied for all s but only for some s in
(-2, -2p(1)). In this case, only a portion of R(D) can be obtained (corresponding

to those Dg for which s satisfies (C)). We have
2
p(x) - p"(X)/52 = p(X)(l-Z/szx ) =0

if and only if x > V2 /Isl. Thus only for large Isl (C) will be satisfied. For

I

s -72.135, we have /§/|s| = .0196 and from (10) p - a_ = 0.02. Thus for

S

IA

-72.135 (C) is satisfied. This portion of s corresponds to a region of small
distortion D (since s is the slope of R(D)) and for this region R(D) is given

parametricaly by (12) and (13).

We now show that the class of continuous concave densities satisfies the
assumptions of Theorem 1 and thus its rate distortion function can be obtained

explicitly.

THEOREM 2. Let X be a random variable with density p(x) which vanishes
outside the interval [a,b], - < a < b < ®. Suppose p(x) is a continuous concave
function on [a,b] and there is an at most finite set of points a = dO < d1 %

< dm <d = b(m20) such that on each ldj’dj+1]’ 3=0,...,m, p(x) is differen-

m+1

tiable and its derivative is absolutely continuous. Then the rate distortion

function of X is given by (12) and (13) .

Proof: Since p(x) is concave, p'(x) < 0 and p'(x) > pl(x). Also fxp(t)dt >0
X a

for x > a. For suppose f v p(t)dt = 0 for some Xg > a- Then p(t) = 0 for each

a




“l. Since

t:[u.x“l by continuity of p. ‘Thus p'(t) 0 for each tel[a,x

p'(t) > pi(t), we have p'(t) < 0 for each t [a,b]. This implies p(t) = 0 for
. . R i b - = .
te [a,b] which is a contradiction. Similarly f pilt)dts >0 fonr x < . hus the
X
only assumption left to be veritied in Theorem | is (B).

If p(b) # 0, then it is clear from (8) that Kl(x) > +» as xtb. Suppose

now that p(b) = 0. Then by 1'Hospital's rule

lim Kl(x) = lim - p'(x)/p(x)
xtb xtb

We will show that p'(b) < 0 and thus Ky(x) > +> as xtb. By the concavity of
p(x), p'(x) is a non-increasing function. Suppose p'(b) > 0. Then p'(x) > 0
tor all xe[a,b] for which the derivative exists. Thus p(x) is non-decreasing.
Since p(b) = 0, this implies that p(x) = 0 for all xe[a,b], which contradicts the
fact that p is a density. Hence p'(b) < 0.

The proot of Kz(x) + +» as x¥a is of course similar.

It should be noted that it can also be shown that Kl(x)f" as  xtb and

K, (x)te as xta monotonically. [

COROLLARY 2.1. Let X be a random variable with continuous probability density
function p consisting of line segments and vanishing outside a finite interval.
Then the rate distortion function of X is given by (12) and (13) if and only if

p is concave.

Proof: It follows from Theorem 2 that if p is concave then its rate distortion
function is given by (12) and (13).

Now suppose that p is not concave. Then there exist two adjacent line scgments
such that the left derivative at their common point is smaller than the right
derivative. Hence for each s, ("g;(” in the proof of Theorem 1 is not a probability
distribution function and thus, by Theorem A, the parametric expressions (12) and

(15) do not give the rate distortion function of X. [




Example 3. Trapezoid density (see Appendix 4 for the derivation). I
0 < ¢ < aand
=l
(a+c) IX‘ < C

p(x) 5 9
(a-|x])/(a"-c9 e s Ixl = 2 (50

then for 0 < D < (a-c)(a+2c)/3(a+c)

R(D) = 2c052[42 + ;cos—l(-SU//uzfcg)l - (a+3c)/2(a+c)
- Qn(Z/(ﬁiL37T3¥c) cos[3%~+ écos_lt~3D//nz—cz)]) (37)
. s
and for (a-c)(a+2c)/3(a+c) s D = D, = (2a"-c7)}/3{a -¢c")
R(D) = -w(D) - ¢n(l-w(D)) (38)

X > 1
where w(D) = [1-4D/(a+c)+(a-c) /3(a+c)" |7 .
Theorem } is also valid when the support of p(x) is not finite. The result

is stated in the following:

THEOREM 1'. Let X be a random variable with density p(x). If p{x) satisfies
all assumptions in Theorem 1 with -© < a < b < +©,  then the rate distortion func-

tion of X is given by (12) and (13) with - < a < b < +m»,

Theorem 1' is an improvement of Theorem 3 in [Tan and Yao, (1975)]. Here
we no longer require the monotonicity of Ki(x), i=1,2, and we allow p'(x) to have
a finite number of discontinuities instead of a single discontinuity at p.

Thé following (known) result can be used along with Theorem 1 and 1' in

evaluating the rate distortion functions of certain random variables.

THEOREM B. If the random variable Xl’ has distribution function Fi' and

distortion rate function Di(R)’ i=1,2, then for all R > 0,

o0

I, (R)-D, (R | < / ]I"l(t]—l<"?(t)!xlt ; (39)

-0




Thus if F o 0 4n L,, or 2Ff P > weakly and F
n | n n

F have finite means, then

Dn(R) » D(R) uniformly.

Proof: Corollary 1 of [Gray, Neuhoff and Schields (1975)] applied to i.i.d. sources
with distributions Fl and F, gives
lnl(k)_nz(x)i - g‘;([«'l,Fz)

But by [Vallender (1973)] d(FJ.FZ) = f ’Fl(t)—Fl(t)|dt and thus (39) follows.
Now if Fn converges to F weakly and all distributions involved have finite means,

then by Theorem 2 of |[Dobrushin (1970)], we have ﬁ(Fn,F) -+ 0 and hence h“(R) * D(R)

uniformly. (i

The following well-known property is useful in connection with Theorem B:
Lf a sequence of probability density functions p, converges to a probability dcﬁ~
sity tunction p almost everywhere, then the corresponding sequence of distributions
Fn converges to the distribution F of p weakly. Thus by letting ¢ > « in Example
1, we find the rate distortion function tor the double exponential density on the
entire real line (since all distributions involved have finite means), i.c.
R(D) = ~4n @D, 0 < D £ a_l = Dmnx' Of course, this has been calculated by using
the Shannon lower bound method [Berger (1971), p. 95]. Note that the double
exponential density does not satisfy assumption (B) of Theorem 1', while the trun-
cated double exponential densities satisfy all the assumptions of Theorem 1.

This demonstrates how Theorem 1 and B can be used in evaluating the rate distortion
function of certain random variables and following are some further examples.

Example 4. (a) Triangular density: Letting cv0 in (36) we see that the
trapezoid density converges to the triangular density

(u-lx])/nj, Ix] « a

Its rate distortion function is then found by letting ¢¥0 in (37): for




<P <all3=D g
0 ) /3 [ A

-

R(D) = 2(‘.05‘[-4% + -%—(‘05 l(— 1 Sh

3“)] - ; - 9n(2c0:4[42- + :}—)cos- (- *u-)l) . (40)

a
(b) Uniform density: Letting cta in (36) we sce that the trapezoid density

converges to the uniform density
1/(2a), |Ix =sa ,

whose rate distortion function is thus found by letting cta in (38): for
0 <D< af2=0D 5
R(D) = -\/1- 22 - Qn(l-‘/l- 25 (41}

a

Note that the triangular and uniform densities satisfy all assumptions of Theorem 1
and thus (40) and (41) could be obtained directly from (12) and (13). (41) was

first given by Tan and Yao in [Gray (editor) (1974)].

ITI. BOUNDS TO RATE DISTORTION FUNCTIONS

In this section, bounds are derived for rate distortion functions of random
variables whose densities do not satisfy all the assumptions in the theorems of
Section Il. Examples are then given comparing these bounds with the Shannon lower

bound.

THEOREM 3. Let X be a random variable with probability density function p(x)
satisfying the assumptions in Theorem 1. Let Xl be another random variable whose
probability density function pl(x) vanishes outside the interval [a,b], and pl(x)

has at most a finite number of simple discontinuities. Then a lower bound for the

rate distortion function of Xl is given parametrically in s by

_ « M-ag
RL(DS) = —Hp(p1)+ Rnl%L - Qn(p(u-ns)) { pl(x)dx

u+h§ b
- f 'pl(x)?n(op(x))dx - fn(P(U*hS)) / pl(x\dx (42

i-a i+b
Eoas Heb




Hod 1 H+Dh b
s s ) S ; y ) 4
l)S = f (p-as—x)pl(x)dx + 13T f pl(xjdx + f (x-y-bs,pl(x)dx (43)
a U-a u+h
S S
b p,(x) i
where H (p,) = f P, (x)n ——— dx is the generalized entropy of p, with respect to
P ] o 1 p(x) 1

p [Pinsker (1964), p. 18]; p is the median of p and ﬂs and bQ are related to s by

(10) and (11).

Proof: Since p(x) satisfies the assumptions of Theorem 1, X;(x) given by (30)
satisfies

b
Cs(y) = f As(x)p(x)cxp(s]x—y’)dx <1, for all ye[a,b].

a

Now define 151)(x) by

1 14
WP ap 0 = a p) (44)
Then AEI)(x) also satisfies
b
Cq(y) = f Aq (x)pl(x)oxp(s]x—yl)dx < 1, for all ye[a,b].
S :

! 1 : < : .
According to Theorem A, A§ )(x) yields a lower bound to the rate distortion func-

tion of Xl’ i.e.

b (1)
sup(sD + f pl(x)Qn A (x)dx)
s<0 a S

Let R (D,s) " :

b
)
5o+ f py0in A (0 dx and tet dgs $olscensmy =l S dj%. .
a
ot ML dh+1 = b be the points where pl(dj) has simple discontinuities. Then
from (44), (30) and (A.5), pl(x)ln Xil)(x) is continuous both in s and x and its

partial derivative with respect to s exists for each x<[a,b] and s < 0 and is

bounded by a constant. Thus

. (L)
d > - b A\ X
aR, (D, s) dl n-1 dis1 b py(x) 29 ¢ () '
s el g R T 6 N o 5 b TS
9s e 5 s
a J=1 d. d Al k)
] n s
ORI(D,S)
Setting ——=—— = 0 and substituting (44) in the above expression, we have

ds

——




b pl(x) dA ()

T e
S

<

Thus for each fixed D, if

2 2
9 R[(P,S)/as e () fomrl all s £ 0

then R[(U,s) as a function of s is concave and its supremum is achieved by the

point Sy satisfying (45), i.e.

RL(D,SD) = sup RL(D,S)

s<0

Whether or not (46) is satisfied, R[(Dg) = RL(hg,s) along with (45) provide the

parametric expressions (in s) of a lower bound of the rate distortion function of

Xl' Substituting (A.5) into (45), we obtain (43). Substituting (43) and (30)

into (4), we obtain (42). Note that the generalized entropy of Py with respect to

Bie Dy

p has the property Hp(pl) > 0 with equality if and only if p(x) = pl(x)

[Pinsker (1964), p. 19]. ag and bq are related to s by (10) and (11). It should

be clear from (42) that R [

I is useful only when Hp(pl) < o,

Clearly Theorem 3 is also valid when the support of the densities is not finite.

THEOREM 4. For each fixed s
R(Dg) if and only if there exists

total probability is concentrated

<0, R[(Ds] gi%en in Theorem 3 is equal to
a probability distribution function Qg whose

on (a subset of) [a,b] and is such that

( l -s(j-a -x) b
sle 7 px) (oslxy] S
2p (n-a,) { < dQ, (y? xe[a,p-a)) ,
= ) b
pl(x) st !%i'f CS‘XﬂthQ(Y) , xn[u-n*'U+b¢| ’

| >(v+b -X)

“S' s L(() |‘-'\I , p ) =2
L 2pGirh) f aq () xe (usb_bl @




l"""""""""""""""""""""""""""""""""""""'""""""""""""

where a, and hg are given by (10) and (11), and
b
f As(x)p(x)cxp(5|x~y|)dx = 1 a e, [dQS] . (48)
a

Proof: Suppose the assumptions are satisfied for a given s<0. Substituting (30)

into (47) and using (44), we have
b (1) b
P () = A ()p)f expls|x-y[)dQ (y) = A;" (x)p; (x)[ exp(s|x-y|)dQ ().
a a

Kk pl(x) # 0, then we have
b
1 =1
DY 017! = [ exp(sxyDag () (49)
a
If pl(xo) = 0 for some xoe[a,b], then from (47), pl(xo) = p(xo) = 0 for some
xoc[a,u—aq)u(u+bs,b]. In this case, we can define XEI)(X) by (49). Therefore
RL(Dq) = R(Dg) by Theorem A. Conversely, for a given s < 0, suppose RL(DS) = R(DS).
Then Aq(l)(x) achieves the supremum in (2) and hence it satisfies (3), i.e.

(49), and is such that Cg(y) =1 a.e. [dQS(y)] for some probability distribution

Q_. Substituting (44) and (30) into (49), we obtain (47). (1

s

~

It would be of interest to compare the lower bound of Theorem 3 with the
Shannon lower bound which is now computed for densities which vanish outside the

interval [a,b], - < a < b < =,

THEOREM C. Let X be a random variable with probability density function p(x)
which vanishes outside [a,b], -© < a < b < ®, Then the Shannon lower bound to

R(D) of X 1is given parametrically in s<0 by

R, (D) = h(p) - |s|(b-a)/2k(s) + &n|s|/2ek(s) (50)
-1
D= |s]7" + (b-a)/2k(s) (51)
b
where h(p) = - f p(x)n p(x)dx and k(s) = 1 - exp(|s|(b-a)/2). #orcover,

a




‘{g]('” < R(D) for all D with R(D) > 0 unless
p(x) = |s|exp(s]|x-(a+b)/2])/2k(s), xc[a,b] , {52)

in which case R*I(“O] = R(DO) at the point D_ with slope s.

0
I{qy{f: Let

K if p(x) > 0

A ()p(x) = 2
E 0 otherwise . (53)
From condition (1), since
b
Cg(y] = Kgf exp(slx-y!)dx ; yela,b] ,
: Ta

one can take

K. = s/2[exp(s/2(b-a)) - 1]

S
Theorem A and a simple calculation yield (50) and (51).

Now from Theorem A, R_ (D) = R(D) at a point D with slope s, if and only

SL
if CS(Y) = I d.6. [dGq]. For the Shannon lower bound, it can be shewn easily
that for each s<0, Cg(y) =1 if and only if y = %(a+b). Hence RSI(D) = R(D) at
D with slope s if and only if GS puts its total probability mass at %(a+b) in

which case

b

[ks(x)j_1 = f cxp(slx-yl)dﬁs(y) = cxp(slx—%(a+b)]) . (54
a

(52) now follows from (53) and (54) and can be verified as a density. Hence there
is one s < 0 such that at the point D

with slope s, we have RS (DO) = R(UO].

0 L

For all other densities p which vanish outside [a,b], we have qu(U) < R(D) for

all D = 0 such that R(D) > 0. (l

Example 5. Let p(x) be the uniform density on [a,b]. Then p(x) satisfies

all assumptions in Theorem 1. Let p](x) be a piecewise continuous density defined




on |la,b]. Then by applying Theorem 3, a lower bound ftor R(D} of p, (x) can be

1

found. Evaluation of (42) and (43) shows that {see Appendix 5) for s < -(b-a)

-1
|5
R[(Dq) = h(pl) v nls|/2e + [ {pl(u#t) - pl(h-t)]dt (55)
g !
-1 s
D = |s] - f t[pl(u+t) + pl(h-t)ldt - (560)
E 0

In (56), if for a given D, |s| is not single-valued, and if a branch of ls] can
be chosen such that (46) is satisfied, then for this branch of |s], R, (D) is the
best possible lower bound achieved by the method of Theorem 3. Note that condi-
tion (46) is equivalent to

pl(a+|s|—1) + pl(b-[s|_l) weilall (57)
in this example (see Appendix 5).

The lower bound of Theorem 3 is of course useful when Theorem 1 is not
applicable to pl(x). As an illustration we now calculate the lower bound of
Theorem 3 when p, is the truncated double exponential density of bxample 1. In
this case the rate distortion function of Py has been calculated in Section II
and therefore we can see how tight is the lower bound determined by (55) and (56).

Calculations show the following:

h(p) = 1 - &+ 20 2u(e) - Su( ™!

R (D) = - ﬁ + en|s|u(e) + [2 exp(e/]s]) - w-2]/20u(q) Is| > 2 (53)
a1 - = -1
b = [s1™" - [eu(@)] 1[(!5] - l)exp(d/]s|) v
D = [] - % +w—l)vtp(u/’)J/l1—0\p(—a/‘)l
max 31 ‘ i e ‘ i/
where u(a) = [exp(x/2) - 1]/a. For the Shannon lower bound we have




R_l(n ) (|,[44)/3 Lu(w) + &n 2u(a) + &n v(s) * v(s)
O
1
b= [sf (0 ~w{s)) - Is] >0 (59)
where v(s) |s|/2(exp(]s|/2) - 1). Curves are plotted for a = 0.1, 2 in
Figures 1 and 2. In general, R' is a better lower bound than l{c’] ; except in &
small neighborhood of “mq\ where R%l is better. As a - 0, the difference

between Rl and R [ becomes larger and as o > «, the difference becomes smaller.

w

[t can also be seen that R is a very good approximation to R. If, for a > 0
fixed, we plot D as a function of 15] as given by (58), we obtain a curve as

shown in Figure 3. Note that at |s| = 2, B = Dml‘. Also D_ achieves its

maximum at some point |s NE

> 2, and D is a decreasing function for all Is| > |s

I gives the

of

It follows (as it is easily checked analytically) that for all |s| > |s .
max

condition (57) is satisfied and thus the branch of Isl: [s] > lgmw\

tightest possible lower bound R[(D;).
Another lower bound for the rate distortion function of the truncated double
exponential density can be obtained by using the truncated Gaussian density instead

of the uniform density, i.e.,
. 2 2
p(x) = K exp(~-x"/207) , x| <%

where K™} = V27 [28(1/20) - 1] and ? is the standard normal distribution. Since
p(x) satisfies all assumptions in Theorem 1, the following lower bound for the rate

distortion function of pl(x) is obtained by Theorem 3:

R (D) = en[|s|K(1-exp(-a/2))/a]

+ [L(80%)7 ]

” (lﬁm_”d—jl(lbd/l) + &n K - uf/joz}cxp(-a/l]
- n K + (]~(n§+a_1)/a0“)cxp(—dn<)l/[l—oxp(—d/l)]

D, = [|$|_1 + (ﬂg-ﬂ-wdl)CXP(-d/l) - (Isl_l»u_l)oxp(—ang)]/ll-oxp(Au,l\l




The relationship between ag and s < 0 is given by

TR -1 o~
: I bt Lo PO f1o ) - & Y211 G}
|s] exp| a /(20 }liAU[eC(2a) ) .(JS/TiI 2w G}.

Numerical calculations show that this lower bound is slightly better than the one
obtained via the uniform distribution.

If the method used in Theorem 1 is applied to a discontinuous probability
density function, a As(x) > 0 may be found satisfying condition (1) whereas a
distribution function Gs(y) satisfying (6) and (7) may not exist. In this case,
using the above mentioned As’ a lower bound for the rate distortion function of
the discontinuous density can be obtained by (2). The following example illus-

trates this point.

Example 6. (For the derivation, see Appendix 6.) Let
1/4 -12x%<0
p(x) =
3/8 =" = 2

Then for 0 < D < 9/16, we have

R (D) = -%/4-5D - on(2- V4-5D) - % 2n(54/625) (60)
and for 13/24 =< D s 17/24 = Dmix’ R(D) itself can be found and is given by
R(D) = - ¥/1-(24D-1)/16 - &n(1l- V1-(24D-1)/16) . (61)

Theorem B may yet be used in another way to find bounds for distortion rate

functions of discontinuous densities.

Example 7. Let p(x) be the density of Example 6 and, for 0 < € < 1, consider

the continuous approximating density




{ 1/4 -1 s x
5 "
x /16 + x/8 + 5/16 —E e )
p_(x) = ; -
€ -x (168" + x/8e + 5/16 0 <= X < ¢
|
{ 3/8 S

Note that p (x) converges to p(x) almost everywhere as € - 0. In this case the
Pe £ )

R_(D} of p, can be evaluated by Theorem 1 and for £ = 0.59367, we have

D_(R) -0.00367 < D; (R) < D(R) < D_(R) +0.00367
where DI(R) is the inverse function of R'(D) in Example 6. (For the evaluation

of DE(R), see [Leung (1976)].)

IV. APPENDIX

Appendix 1. Derivation of (20)

Substituting (25) into (20) we have

f [)(t)~q_2 "(t)+C, S(t-p+a )+C, S(t~pu-b.) +£+§_1n §(t-d )!OS\x-th* S e
L > P 155 bl S s s | et ek 1y L
V _):SZ. - c
s
x=V
s
Suppose xa(dk,dk+1], where R dk < u+b5. Then
H+b > 5 s(x-pu+a_) s(u+b _-x)
f S(p(t)—s “p”(t))oslx tldt 5 C1 qe S i Cﬂ ge S
H-a o5 S
& i s(x—di) 2+n-1 s(di—x) =
+ DEre e ¥ G e S =D (A1)
j=g 123 j=k+1 J°° [sT
Now
H+b 5 o dQ f+n~2 d. Ji+b
} s(p(t)—s-‘“p”(t))cslx tldt = "% 3 fj+l s |5
H-a, L™ i d_'l d91+n—l
-2 s |
(plt)-s ”p"(r))vklx tldt : (A.2
Since for each se (-@,-2p(n)), (p(t)-\_”p”(t)lvxl\vt‘ ig a.e. [heb.] on
(x-t)

2 S .-
[u-a_,d,] equal to the derivative of -s “(p'(t) + sp(t))e which by assum

S

ption (A) is absolutely continuous, we have




(38 > ] SX T it d,
j“‘ (;\U)«h‘“&p"(t))cb(x»t)(lr e = [e htp'(t) + 56 up(t\ll E

-a S 1-a
Bsgc e

NP L. 3 7 WY PR

oSX -sd, —sd; -s(u-uq) -s(u-a_)
=555 e p:(dl) + se 'p(di) - e : pl(u—ug) - se > p(ue-a_ )]
s

Similarly, for 2 < j < k-1,

jel o
I e-s e’ T Yae
d

! &SX _de+l -sdj+1 sdj —sdi
== [e p:(dj+l) + se p(dj+1) - e pl(dj) - se -p(dj)] A

S

DS "
[ i - Bt s

dk s
= ’%‘P'(X) +'T§T p(x) + s [pl(dy) - ISIp(dk)]eS(x-dk) ;
S
for k + 1 £ j £ 2+n-2,
d
P e - s e E0a
* s(d,~X)

= 57100 ¢ gy P00 - s LIsIp(, ) + iy, le

d.
e - s e (E e
d

J -sx sd. sd. sd

s esz [e J+1P:(dj+1) - se J+1p(dj+1) e jpl(dj) % Sedep(dj)l ;
1 e - s Bmees T
d2,+n—1
o) e;;x[es(u+bs)p1(u+bs) ) SGS(U+bS)p(U+bS) ) eSdQ*"_lp;(dQ,n_l)
s sCsd;)nun—lp(d’?‘m-l)’

Substituting the above expressions in (A.2) and combining similar terms, we have

u+b

’ 5 -9 -

[ 5(p(t) - s ‘p”(t))cslx t,dt
p-a

’ ) s(x—u+ns) S (jit
-

[ . 1
= [ I' p(x) - ‘r)l':"l[)(l“ﬂx_) = P;““”\,"U ~_H\';p(;:rh“‘) +p! (urh“)!“

S S




k 5 >(x-di) Lan=-1 - s(d:-x)
- )s [pl(dj) ~ pl(dj)lv : - ) S lpj(Jj‘ - PlidJ)‘V

)

| i=t j=k+1

Equating coefficients in (A.1) we obtain (26).

Appendix 2. Calculation of Xq(x) (i.e. (30)).

From (6), we have, for x-[a,b-asl

u+b

[As(x)]'l = [ Texp(s(t-x))dG_(t)
p-a
S

and substituting (25) and (26), we obtain

d2 Qen-2 di+1 u+bs )
-1 3 AN - - -
R =1 o« 3 e Hp(t)=s™p" () Jexp (s (t-x))dt
L ik dj doen-1

2
+ exp(u-a-x)[[s[p(u-a,) - p!(u-a)]/s
L+n-1
+ 1 sTOpt(d)-pL(d) Jexp(s (d;-x))
b el el LS j
j=L
-2
+s “[|s|pu+b) + p! (b ) Jexp(s (u+b_-x))
The integrals in the above expression have been calculated in Appendix 1 (except
for minor adjustments in the exponents). Thus, using results similar to those in
Appendix 1, we have
-1
Ag(x) "~ = 2exp[s(u-a_-x)Ip(u-a)/|[s|
and the expression for As(x), xe[a,u—aS], given in (30). The calculation of
Xs(x) for xc[u+bs,b] is similar. For xe[u—ag, u+bs] we have

A () = a (x)/p(x) = |s]/2p(x)

from the solution of (17).




Appendix 3. ‘Fl?i‘f{rﬁiﬂ?_f{ﬁ_l.Lg)~f‘UF{«IJ:il'
The relation
b
- o ’}\ > 3s X
Dy = - [ (/A (x)) (X, (x)/3s)dx

a

is proved as in [Tan and Yao (1975)] and thus its proof is omitted here. Th

calculation of Bkg(x)/as is given in the following: From (30), we have for

xL(a,u—as)

A (x) op(u-a )
S 1 S S
= = [- + . ———J]exp(-s(p-a _-x))
as 2p(u—as) ZPZ(U-aS) 9s S
da
S

S i S .
i §ET§?5§7[> e (u—as-x)]exp(-s(u-as-x))

Differentiating (21) with respect to s, we have

da op (n-a )
S -2 s :
-pl-a )—= = -5 s S PlEea g]
and thus
ds ~ sp (n-a,) ds i
Substituting (A.4) into (A.3), we obtain
als(x)
o (u—as—x)ks(x) for all xe(a,u—as)
The calculation for xe(u+bs,b) is similar. Thus
-(H-a_-x)A (x) xe (a,u-a)
X (x) 1 5
_52__“ = > TgT As(x) xc(p—as.u+bs)
- (x-u-hs)ks(x) x:(urbs,b)

Substituting (A.5) in the expression for D, we obtain (13). From (4) and

(A.5) we have

IS

all

(A.3)

(A.5)




fi~al

= M- i
R(hg) - SUQ + 9n ‘i’ #* f hs(xAUPAN)p(\)Jx - %n{pi;~uﬁ]l f plx)dx
i & p a a

p+hg b b
- f “p(x)np(x)dx + f s(u+hv—x)p(x)dx - in(p(u+hg)) f p{x)dx

u-a L+b 5 ~  u+b

S S S
Substituting (A.6) into the above expression, we obtain (12). Finally, sincc

b
nm1‘ = inf f |x-ylp(x)dx, it is easy to verify that the infimum is achieved
o y a b
when y = ), the median of p(x), and thus mex = f [x~u|p(x)dx.
Hie, 5

Appendix 4. Derivation of Example 3.

Here we only sketch the calculations in Example 3 and omit the lengthy details.

Since p(x) is symmetric about x = 0, we have a = h5 and (11) gives the relation-

ship between [s| and a_:
sl = 2/(n—as) for asr[c,a] (A.7)
is) = 2/(a+c-23§) for uqc[O,c] . (A.8)

We now distinguish two cases (i) and (ii).

(i} If lsl = 2/(a-c) , using (A.7), (12) and (13), we obtain

R(DS) = Qniilégigl + 2/sz(az—c2) - (a+3c)/2(a+c)
T 4/3|s|3(a2-c2) ; (A.9)
S ls

The parameter s in (A.9) can be eliminated as follows: Substituting x = 2/ |s| (a+c)

into (A.9), we obtain the following cubic equation:

3 3(a-c) . % 6(a-c)D

X - = 0.
a+c

2
(a*c)

The solutions of this cubic equation consist of three unequal real roots

P ———— - e e g
X = 2/(a-c)/ (a+c) cos[% €os l(—SD//n”~c“ + 2kn/3) ], k=012

[t can be shown that only x  satisfies the condition

r4

[s| = 2/(a-¢)




Therefore

R(D) -2n x, + \{[u#c)/l{u—t) - (a+3¢)/2(a+c)

(a-¢) (ar2c)

which gives the expression in (37) for 0 < D .
> 3(a+c)

(ii) If |s|] = 2/(a-¢), using (A.8), (12) and (13), we obtain

R(H\) o ?n!\i(u+c)/l + J/jsl(u*c) -1

D, * i»\'l-l - 1/s" (a*c) + (:l-c)"/l.‘(.nr). (A:10)

S

Eliminating s in (A.10), we obtain the expression in (38) for (a-c)(a+2¢)/3(a+c)

R oy
< D < (:1"’—(“’)/3(:1"«") D

max

Appendix 5. Derivation of Example 5.

In Theorem 3, let p(x) = (h-:l)ml for x¢[a,b]. Then from (10) and (11), we have

&, ® hs = %(b-a) - ls[-], U = %(b-a)
Al.\;() b
-Hp(pl) = - { pl(x)in(pl(x)(b—u))dx s h(pl) - n(b-a)
Thus (42) becomes ] I"l
Y a+|s
R[ (D\_) = h(pl) - n(b-a) + QnJ%L + ¢n(b-a) f pl(x)dx
) - a
b-,s[_l ” b
- P, (x)%n —— dx + n(b-a) f p, (x)dx
1 b-a kT
Sf=k b-|s|
a+|s|
l:;[ hAlSl-l .
= h(pl) + &n 5 + f ) _lpl(x)dx
ls] ;\+|s|—l b
= h(pl) + &n §~ -1 +f pl(x)dx + f lpl(x]dx
a h—l\I
-1
s, 13
= h(p;) + an 5+ (f) [py(avt) + p(b-t)]dt




From (43) we have

u»ls['l ) { b- \;[‘1 b :
D = (a+ =1 =x)p, (x)dx + f p, (x)dx + f (x-b+—)p, (x)dx
s £ [s] 1 [sT o 1F) h~|Sl'l sl %i
-1
sl
2 rgr - )O t[pl(nbt) + pl(h~t)|dt
This proves (55) and (56).
Now condition (46) is equivalent to
) % B :
fh F}fjl.[ ?h_éfj?, 5 .hl,_.(?ﬁ§£i1)2|d‘ <0
= ] N 4
a Xs(x) 9s” Xs(x) e

which is equivslent to (57) when Ag(x) is replaced by (30) for p(x) = (b—a)_l

Appendix 6. Derivation of Example 6.

(SN S
!
&
wN

Calculation shows that p = 2/3. Let L | + hg] be the support of

the distribution G_(y).

Wi v

(i) Suppose =B > (0. This case is similar to the case of the uniform

distribution. One can apply Theorem 1 directly to get:

5 3 4|s
R(DS)—m—l+Rn——3—L,

3 ; 3
a‘S l.\' < 7
e R T |
S Sl SISIZ 24
T e - 3 s : 13 17
Eliminating |s|, one obtaines the desired expression (61) for sgradasr=D_._.
(i1) Suppose -1 < %-- d & 0. Then gg(y) has the form for all y(vg
il iy 2 , : 2
8, (¥) = ply) + €5 Ok -~ 3+ &) +. €, 0T{y-0) + C, by ~ 3~ b
where C Sl C Ry E ) g C 3
‘1,s 4 s] o 8|*12 2 S e ST?T :
. . ST ) e S
.‘\l_\() d_&‘, = 3 ]&[ ’ hS : _\ - [\‘T




From these expressions, Ag(x} can be calculated and has the following form:

.
> = -~ »"\4’
zl\‘lclhl(‘g s st bt s ™
2]<| i L X 0
holeli= iy L

3 : 3-[s| psxsTeh
‘ , : .
| 4 -ls| 5+ b )+|s|x 3
| :lble =+ b S x < 2
I 3

-
It remains to show that Cg(y) < 1 for ydvg. We will show this when y > % +
2
The case y < = - a_ 1is similar. Now
3 s
2 (2/3)-a_ 4 %
C () fl A, ()p(x)exp(s|x-y[)dx = {1 " i=islexpl|s|y - a_-y)
o 1 (2/3)+b_ |
+ [ 7 Slslexp(-ls|(y-x)ydx + [ 7 Zlslexp(-s] (y-x))dx
(2/3)-a_ 0 -
S
¥y 2 2 )
+ f 7[S|0xp(—[$|(; + b +2x-y)dx + f J1slcxp(—ls|(§-+h_)rv)Jx
o 2 3 S 2 3 55
(2/33+b y
S
= g ewlls G o1+ (g +lsl- Flsvexllslo - 5 - b1
4 RAEe 4 Bl e 3 S
Differentiating Cg(y) with respect to y, we have
C!iy) = |s|ex [lsl(' b b_) ] f(y)
3 ) 5 p ) 3 S y
where f(y) = |s]|- L 1Jsly - Lex [2]5](Z~+ b. - y)]. Now f'(y) =
L T " Nl 3% %% : y
2 . 1 2
Llil{v(p[llSl(§ ¥ b, = ¥)) - 1}, and £'(yg) = 0 if and only if y, = = + b,
>
Since P'(y”) = -5~ < 0, f(yO) is a maximum. But f(yn) = 0 and thus f(y) <
2
and Cl(y) < 0 which implies that C_(y) is non-increasing. Since Yo = % + b
2- s : , we have Cg (y()) = 1. Thus
(Zs(y) Sk for all y = Yo = 3 * l\s

0

S
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Since g (y) is not a probability density function, the A (x) found above can be
S s 4 S

used only to provide a lower bound to the R(D) of p(x). Thus by Theorem A

Rl(h,s) = -|s|p + 5/(16]s]) + } n 2

s| + (3/4)in(4]s]/3)
Differentiating R[(D,S) with respect to |s[ and setting RL(”,S) = 0, we obtain

b, = |s]™! - ssaels|® . |s] > 1

S

Also, RE(D,S) = 5/(8[5!3) = Isl—l < 0. Eliminating |s| we obtain (60).
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